热工类仪器校准:温度计、温湿度计、烤箱、恒温恒湿机、盐雾试验机、耐寒试验机、耐黄变试验机、熔融指数试验机、电线加热变形试验机、温度巡检仪、炉温测试仪、多点采集器、恒温槽(水槽、油槽、水浴锅)、辐射温度计等。
理化类仪器校准:可调移液器、常用玻璃量器(量筒、烧杯、容量瓶等)、pH计、密度计、波美计、白度计、声级计、照度计、光泽度计、旋转粘度计、紫外分光光度计、原子吸收分光光度计、色差仪、电位滴定仪、X射线荧光光谱仪(ROHS检测仪)、电导率仪、气相色谱仪、液相色谱仪、频闪仪、透光率仪、木材水分测湿仪、标准光源箱等。
莆田仙游县计量设备校准中心图(1) 经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为: 棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道OMA(Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的*光谱分析仪器,它集信息采集,处理,存储诸功能于一体。 由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率: 使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。 它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。 此外,设备设计人员现在可以将智能系统和物联网扩展到过去难以接近的区域和应用中,而不受尺寸的限制或价格的制约。对*技术和物联网(IoT)的日益依赖,推动了对传感器的需求,这些传感器可方便地从少量到大量部署,并且提供低扩展成本和免维护。技术的进步使许多不同类型设备之间的互联成为可能。始于智能手机的互联已经演变成温控器、家电、车辆和其它被称为物联网(IoT)设备的联网。物联网由通过各种接口来回传输数据的许多设备组成,无线云接口是常见的接口。 莆田仙游县计量设备校准中心图(2)
发射光谱分析的过程 光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。 1.把试样在能量的作用下蒸发、原子化(转变成气态原子),并使气态原子的外层电子激发至高能态。当从较高的能级跃迁到较低的能级时;
打开451的时间门测量功能,将中心频率设置成f1,频宽为希望测量的偏离f1的频率偏移的两倍,将时间门触发信号设置为外部门控输入,门宽度设置成T1,该数值必须小于跳频源工作在f1频点的驻留时间,此时451输出的信号频谱即为跳频源工作在f1频率时的杂散频谱,利用差值频标功能即可获得杂散数值。跳频源输出信号、触发门控信号和时间门信号的时序关系图给出了跳频源输出、触发门控信号、时间门信号之间的时间关系图。 原子将释放出多余的能量而发射出特征谱线。这一过程称为蒸发、原子化和激发,需借助于激发光源来实现。
2.把原子所产生的辐射进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的光谱线条,即光谱图。系借助于摄谱仪器的分光和检测装置来实现。 莆田仙游县计量设备校准中心图(3)
3.根据所得光谱图进行定性鉴定或定量分析。由于不同元素的原子结构不同,当被激发后发射光谱线的波长不尽相同; 即每种元素都有其特征的波长,故根据这些元素的特征光谱就可以准确无误的鉴别元素的存在(定性分析); 仪器的校准:送至认可之校验单位校验,提供检验报告书,并可追溯溯源。内校:使用可追溯经校验合格的标件,作为厂内仪器的内校依据,由厂内合格校验人员执行校验游校:须进行外校仪器/设备由于体积态大或灵敏度很高不方便搬动,第三方检测机构人员下厂进行校验。 快速傅立叶(FFT)变换是一种实现离散傅立叶变换的方法。该方法类似于离散傅立叶变换,可以将一定数量的离散采样变换至频域。示波器通常利用快速傅立叶变换的采样技术,将时域采样变换至频域。大多数现代示波器实现的传统快速傅立叶变换方法存在一个限制,尽管人们只对一部分频率范围感兴趣,FFT的计算过程是针对整个采样信息进行的。这种计算方法效率低下,使得整个过程速度较慢。数字下变频(DDC)解决了这一问题,其方法是将目标频带宽度下变频至基带并以较低采样率对其重新采样,实现了在小得多的记录长度上进行快速傅立叶变换。 扫瞄调谐频谱分析仪是常用的频谱分析仪类型,它的基本结构与外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号(IF)放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。如上所言,影响信号反应的主要关键为滤波器频宽。高斯滤波器(Gaussian-ShapedFilter)影响的功能就是量测所常见到的解析频宽(ResolutionBandwidth;RBW)。
安源区计量仪表校准中心-CNAS资质
其他推荐产品
首页| 关于我们| 联系我们| 友情链接| 广告服务| 会员服务| 付款方式| 意见反馈| 法律声明| 服务条款
热工类仪器校准:温度计、温湿度计、烤箱、恒温恒湿机、盐雾试验机、耐寒试验机、耐黄变试验机、熔融指数试验机、电线加热变形试验机、温度巡检仪、炉温测试仪、多点采集器、恒温槽(水槽、油槽、水浴锅)、辐射温度计等。
理化类仪器校准:可调移液器、常用玻璃量器(量筒、烧杯、容量瓶等)、pH计、密度计、波美计、白度计、声级计、照度计、光泽度计、旋转粘度计、紫外分光光度计、原子吸收分光光度计、色差仪、电位滴定仪、X射线荧光光谱仪(ROHS检测仪)、电导率仪、气相色谱仪、液相色谱仪、频闪仪、透光率仪、木材水分测湿仪、标准光源箱等。
莆田仙游县计量设备校准中心图(1)
经典光谱仪器都是狭缝光谱仪器。调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:
棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪.光学多道OMA(Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的*光谱分析仪器,它集信息采集,处理,存储诸功能于一体。
由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率:
使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。
它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。
此外,设备设计人员现在可以将智能系统和物联网扩展到过去难以接近的区域和应用中,而不受尺寸的限制或价格的制约。对*技术和物联网(IoT)的日益依赖,推动了对传感器的需求,这些传感器可方便地从少量到大量部署,并且提供低扩展成本和免维护。技术的进步使许多不同类型设备之间的互联成为可能。始于智能手机的互联已经演变成温控器、家电、车辆和其它被称为物联网(IoT)设备的联网。物联网由通过各种接口来回传输数据的许多设备组成,无线云接口是常见的接口。
莆田仙游县计量设备校准中心图(2)
发射光谱分析的过程
光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。
1.把试样在能量的作用下蒸发、原子化(转变成气态原子),并使气态原子的外层电子激发至高能态。当从较高的能级跃迁到较低的能级时;
打开451的时间门测量功能,将中心频率设置成f1,频宽为希望测量的偏离f1的频率偏移的两倍,将时间门触发信号设置为外部门控输入,门宽度设置成T1,该数值必须小于跳频源工作在f1频点的驻留时间,此时451输出的信号频谱即为跳频源工作在f1频率时的杂散频谱,利用差值频标功能即可获得杂散数值。跳频源输出信号、触发门控信号和时间门信号的时序关系图给出了跳频源输出、触发门控信号、时间门信号之间的时间关系图。
原子将释放出多余的能量而发射出特征谱线。这一过程称为蒸发、原子化和激发,需借助于激发光源来实现。
2.把原子所产生的辐射进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的光谱线条,即光谱图。系借助于摄谱仪器的分光和检测装置来实现。

莆田仙游县计量设备校准中心图(3)
3.根据所得光谱图进行定性鉴定或定量分析。由于不同元素的原子结构不同,当被激发后发射光谱线的波长不尽相同;
即每种元素都有其特征的波长,故根据这些元素的特征光谱就可以准确无误的鉴别元素的存在(定性分析);
仪器的校准:送至认可之校验单位校验,提供检验报告书,并可追溯溯源。内校:使用可追溯经校验合格的标件,作为厂内仪器的内校依据,由厂内合格校验人员执行校验游校:须进行外校仪器/设备由于体积态大或灵敏度很高不方便搬动,第三方检测机构人员下厂进行校验。
快速傅立叶(FFT)变换是一种实现离散傅立叶变换的方法。该方法类似于离散傅立叶变换,可以将一定数量的离散采样变换至频域。示波器通常利用快速傅立叶变换的采样技术,将时域采样变换至频域。大多数现代示波器实现的传统快速傅立叶变换方法存在一个限制,尽管人们只对一部分频率范围感兴趣,FFT的计算过程是针对整个采样信息进行的。这种计算方法效率低下,使得整个过程速度较慢。数字下变频(DDC)解决了这一问题,其方法是将目标频带宽度下变频至基带并以较低采样率对其重新采样,实现了在小得多的记录长度上进行快速傅立叶变换。
扫瞄调谐频谱分析仪是常用的频谱分析仪类型,它的基本结构与外差式接收器类似,主要工作原理是输入信号透过衰减器直接加入混波器中,可调变的本地振荡器经由与CRT萤幕同步的扫瞄产生器产生随时间作线性变化的振荡频率,再将混波器与输入信号混波降频后的中频信号(IF)放大后、滤波与检波传送至CRT萤幕,因此CRT萤幕的纵轴将显示信号振幅与频率的相对关系。如上所言,影响信号反应的主要关键为滤波器频宽。高斯滤波器(Gaussian-ShapedFilter)影响的功能就是量测所常见到的解析频宽(ResolutionBandwidth;RBW)。
安源区计量仪表校准中心-CNAS资质