光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。接下来为您分析光谱分析仪的相关原理。 光谱分析仪的原理及特点: 高能火花激发试样产生的复合光,通过入射狭缝射在分光元件上,被色散成光谱,后计算机把谱线的强度用经验公式换算成谱线所代表的元素含量。 1、自动化程度高,选择性好,操作简单,分析速度快,可同时进行多元素定量分析。如:能在1一2min之内同时测定钢中20多个合金元素,有效控制冶炼工艺,提高炼钢速度。 2、精度高,有利于进行样品中高含量元素的分析。
3、检出限低。一般对固体的金属采用电火花或电弧光源时,检出限可达((0.1-10)X10-6 4、在某些条件下,可测定元素的存在方式,如测定钢铁中的酸溶铝、酸不溶铝等。 眉山洪雅县气体报警器校准机构(图1) 平均功能是对采样数据执行平均处理,能直接支持平均处理的测量功能有:U、P、S、Q等值。平均处理包括指数平均和移动平均两种处理方式,下面介绍两种方式的区别和应用。首先我们来列一个表格:指数平均选择指数平均法,用户可设定衰减常数对电压或电流有效值、有功功率的瞬时值(采样数据)进行指数平均,去除被测量的高频成分。其中衰减常数可以手动设置,衰减常数设置值越大测量值越稳定,对输入变化的响应速度也就越慢,也就是说测量延迟会相应变长。
由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。 近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。 光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航天、食品卫生、环境保护以及教学科研等各个领域。 光谱分析仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。 光谱分析仪属于X射线荧光光谱仪,同样属于原子发射光谱仪; 但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱; 但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。 而对于异常情况来讲,我们研制了电源控制设备。上电时,以前级电源控制后级电源输出,前级电源加不上,后级电源肯定不输出;而发生异常断电时,也会利用比例放大、积分放大单路来实现断电顺序的二次调理。电源控制设备突发测试中断恢复为了应对测试突发中断,在软件平台中嵌入了一个中断记录与恢复子平台。它基于数据库,具有测试点记录、被测件状态记录、状态恢复和容错功能。当然,若要达到中断恢复目的所需的数据量较大,应该选择性记录,只记录有用的数据。
眉山洪雅县气体报警器校准机构(图2)
近红外光谱分析仪是利用气体或液体对红外线进行选择性吸收的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰能力强等特点,被广泛应用于石油化工冶金等工业生产中。 近红外光谱分析仪的光源是采用上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。 在这火花式光谱仪光源中,电极之间空气或其他气体一般处于大气压力。因此放电是在充有气体的电极之间发生,是依靠电极间流过的电流使气体发光,是建立在气体放电的基础上。 低压火花以及控波型光谱分析仪光源是在电容电场作用下,采用控制气氛中放电;火花 光谱分析仪光源是在直流电场作用下,稀薄控制气氛中放电;等离子体火花式光谱仪光源是在射频电磁场作用下控制气氛中放电(电极之间的电压以及电流的关系不遵守欧姆定律的)。 光谱分析仪光源的作用是将待测元素变成气体状态,而后激发成光谱,根据该元素谱线强度转换成光电流,由计算机控制的测光系统按谱线的强度换算成元素的含量。光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,以求达到一个动态平衡,当火花光谱分析仪光源激发一定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度足够大,才能得到大的光电信号。
眉山洪雅县气体报警器校准机构(图3) 封测是封装和测试制程的合称,其中封装是为保护芯片不受环境因素的影响,而将晶圆代工厂商制造好的集成电路装配为芯片的过程,具有连接芯片内部和外部电路沟通的作用;测试环节的目的是检查出不良芯片。作为半导体核心产业链上重要的一环,封测虽在摩尔定律驱动行业发展的时代地位上不及设计和制造,但随着“越摩尔时代”概念的提出和到来,*封装成为了延续摩尔定律的关键,在产业链上的重要性日渐提升。既然*封装将成为行业未来发展的关键推动力,那么我们就有必要对封装产业尤其是国内的封装产业进行一个大致的了解,以便窥探产业未来发展趋势。
近红外光谱分析仪是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。 首先要做试验,打开控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。近红外光谱分析仪保养工作做得好,就能够延长使用寿命,可以把工作做得更好
仪器中,不同检测方法之间没有数据交互或其它功能模块的关联。由于该技术只是两种或者多种检测设备的简单叠加组合,所以仪器的体积和重量并未精简,实现的功能也较简单。第二阶段:功能模块集成技术功能模块集成技术是指在仪器中,不同检测方法的某些共同功能是采用同一模块来实现的。这种集成仪器,当需要增加某种检测功能时,只需在仪器的插槽上插上该种功能的模块便可实现该检测方法的集成。由于该种集成模式电路的某些功能是共用的,不仅检测数据进行了融合,不同的检测结果也可同屏显示,还可将不同检测方法得到的检测数据送入数据融合中心,得到融合结果,以便对检测对象的质量做出综合判定。
涵江区仪器计量校准中心-CNAS
其他推荐产品
首页| 关于我们| 联系我们| 友情链接| 广告服务| 会员服务| 付款方式| 意见反馈| 法律声明| 服务条款
光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量。接下来为您分析光谱分析仪的相关原理。
光谱分析仪的原理及特点:
高能火花激发试样产生的复合光,通过入射狭缝射在分光元件上,被色散成光谱,后计算机把谱线的强度用经验公式换算成谱线所代表的元素含量。
1、自动化程度高,选择性好,操作简单,分析速度快,可同时进行多元素定量分析。如:能在1一2min之内同时测定钢中20多个合金元素,有效控制冶炼工艺,提高炼钢速度。
2、精度高,有利于进行样品中高含量元素的分析。
3、检出限低。一般对固体的金属采用电火花或电弧光源时,检出限可达((0.1-10)X10-6

4、在某些条件下,可测定元素的存在方式,如测定钢铁中的酸溶铝、酸不溶铝等。
眉山洪雅县气体报警器校准机构(图1)
平均功能是对采样数据执行平均处理,能直接支持平均处理的测量功能有:U、P、S、Q等值。平均处理包括指数平均和移动平均两种处理方式,下面介绍两种方式的区别和应用。首先我们来列一个表格:指数平均选择指数平均法,用户可设定衰减常数对电压或电流有效值、有功功率的瞬时值(采样数据)进行指数平均,去除被测量的高频成分。其中衰减常数可以手动设置,衰减常数设置值越大测量值越稳定,对输入变化的响应速度也就越慢,也就是说测量延迟会相应变长。
由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。
近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。
光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航天、食品卫生、环境保护以及教学科研等各个领域。
光谱分析仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。
光谱分析仪属于X射线荧光光谱仪,同样属于原子发射光谱仪;
但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱;
但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。
而对于异常情况来讲,我们研制了电源控制设备。上电时,以前级电源控制后级电源输出,前级电源加不上,后级电源肯定不输出;而发生异常断电时,也会利用比例放大、积分放大单路来实现断电顺序的二次调理。电源控制设备突发测试中断恢复为了应对测试突发中断,在软件平台中嵌入了一个中断记录与恢复子平台。它基于数据库,具有测试点记录、被测件状态记录、状态恢复和容错功能。当然,若要达到中断恢复目的所需的数据量较大,应该选择性记录,只记录有用的数据。
眉山洪雅县气体报警器校准机构(图2)
近红外光谱分析仪是利用气体或液体对红外线进行选择性吸收的原理制成的一种分析仪表,它具有灵敏度高反应速度快分析范围宽选择性好抗干扰能力强等特点,被广泛应用于石油化工冶金等工业生产中。
近红外光谱分析仪的光源是采用上下两个电极的方法,通上电流,电极之间就形成一个火花式光谱仪光源。
在这火花式光谱仪光源中,电极之间空气或其他气体一般处于大气压力。因此放电是在充有气体的电极之间发生,是依靠电极间流过的电流使气体发光,是建立在气体放电的基础上。
低压火花以及控波型光谱分析仪光源是在电容电场作用下,采用控制气氛中放电;火花 光谱分析仪光源是在直流电场作用下,稀薄控制气氛中放电;等离子体火花式光谱仪光源是在射频电磁场作用下控制气氛中放电(电极之间的电压以及电流的关系不遵守欧姆定律的)。
光谱分析仪光源的作用是将待测元素变成气体状态,而后激发成光谱,根据该元素谱线强度转换成光电流,由计算机控制的测光系统按谱线的强度换算成元素的含量。光源作用的这种动态过程,就是将样品由固态变成气态,其中一部份元素激发而发射光谱,而这些气态的样品又不断地向四周扩散,分析间隙的气态样品也在不断更新,以求达到一个动态平衡,当火花光谱分析仪光源激发一定时间后,蒸气云中待测元素浓度增大,只有蒸气云中浓度足够大,才能得到大的光电信号。
眉山洪雅县气体报警器校准机构(图3)
封测是封装和测试制程的合称,其中封装是为保护芯片不受环境因素的影响,而将晶圆代工厂商制造好的集成电路装配为芯片的过程,具有连接芯片内部和外部电路沟通的作用;测试环节的目的是检查出不良芯片。作为半导体核心产业链上重要的一环,封测虽在摩尔定律驱动行业发展的时代地位上不及设计和制造,但随着“越摩尔时代”概念的提出和到来,*封装成为了延续摩尔定律的关键,在产业链上的重要性日渐提升。既然*封装将成为行业未来发展的关键推动力,那么我们就有必要对封装产业尤其是国内的封装产业进行一个大致的了解,以便窥探产业未来发展趋势。
近红外光谱分析仪是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。
首先要做试验,打开控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。近红外光谱分析仪保养工作做得好,就能够延长使用寿命,可以把工作做得更好
仪器中,不同检测方法之间没有数据交互或其它功能模块的关联。由于该技术只是两种或者多种检测设备的简单叠加组合,所以仪器的体积和重量并未精简,实现的功能也较简单。第二阶段:功能模块集成技术功能模块集成技术是指在仪器中,不同检测方法的某些共同功能是采用同一模块来实现的。这种集成仪器,当需要增加某种检测功能时,只需在仪器的插槽上插上该种功能的模块便可实现该检测方法的集成。由于该种集成模式电路的某些功能是共用的,不仅检测数据进行了融合,不同的检测结果也可同屏显示,还可将不同检测方法得到的检测数据送入数据融合中心,得到融合结果,以便对检测对象的质量做出综合判定。
涵江区仪器计量校准中心-CNAS