资讯

INFORMATION

您现在的位置::首页 > 资讯管理 > 厂商要闻 > 销售亮点

激光显示实现“0”的突破,凭空作画不再是梦,激光还有啥应用

来源: 红旗仪表有限公司 >> 进入该公司展台 2022/09/14 14:01:32 已浏览:
导读:红旗仪表有限公司




“今朝亮相,源自光影背后十余年潜心研究。”曹祥东说,飞秒激光曾被誉为光谷四大发明,他和团队致力于快激光产业核心前沿技术研发和应用技术开发,在关键核心技术上全部国产化。


击穿空气,需要100太瓦每平方厘米的能量密度,即飞秒激光在指甲头大小面积上,达到100太瓦能量输出,在飞秒的时间尺度释放出来电离空气。“点亮”空气是飞秒激光综合技术水平的体现,依靠强大峰值功率的同时,平均功率仅几十瓦。


“我们的空中成像飞秒激光技术,显示亮度达到*水平,客户比较了全球国内外多家公司产品,*终选择了我们。”曹祥东说。


曹祥东介绍,团队采用研发的*飞秒激光技术,未来,将通过对飞秒激光脉冲时空分布进行复杂编辑和控制,调控体素的亮度、颜色及持续时间等特征参数,进一步升级飞秒激光器功率,实现大幅面空中真实3D显示。


激光在现代科技和工业中的应用已经和广泛,具体有哪些呢?


激光技术的应用


新一代快激光器经过专门优化,可支持终端市场的用户需求,例如增材制造、医学、半导体计量和应用研究。


1、纳米制造


激光可用于许多增材制造 (AM) 工艺,包括金属的激光烧结和聚合物的立体光刻。这些过程中的每一个都提供了一种无需掩模或模具即可创建复杂而的结构的方法。增材制造对于小规模生产应用特别有价值,例如零件的快速原型制作或个性化医疗植入物。


一种新兴的 AM 方法是一种称为双光子聚合的立体光刻技术,由于多种原因,它正在迅速引起人们的兴趣。首先,它能够比任何其他 AM 方法具有更高的空间分辨率。其次,它是一种三维自由成型工艺,因此它不受激光烧结或单光子立体光刻的加工限制的限制,其中零件必须从下向上或自上而下逐层创建。


紧凑、免提飞秒激光器的出现使双光子聚合等技术在许多行业和应用中更加经济可行。


激光技术是如何做到这一点的?在立体光刻中,激光束聚焦到光敏树脂浴中。当合适波长的光(通常是紫外光)照射到这种树脂上时,它会破坏聚合物的键,材料变得具有反应性,从液态单体化学物质中形成固体聚合物。


双光子聚合是一种具有较高空间分辨率的三维自由形式增材制造技术,能够生产极小的零件和特征。新的飞秒激光器使双光子聚合技术在经济上更加可行。由 Wildman 实验室/诺丁汉大学提供。


此过程允许直接从 CAD 文件创建几乎任何形状,并且原材料并不昂贵。在双光子方法中,快激光被定制为树脂通常吸收的正常波长的两倍。通过使用高数值孔径 (NA) 光学器件,光束被聚焦到纤细的腰部。在这个腰部,而且只有在这个腰部,快脉冲的峰值功率高到足以驱动双光子吸收。


这种方法提供了*的分辨率,原因有二。首先,使用高 NA 光学器件会产生紧密的微米级腰部,其次,由于双光子吸收取决于峰值功率的平方,因此可以调整传输的激光功率,以便在激光束内只有一个小的中心区域。束腰引起聚合。通过这种方式,该工艺可以提供亚微米空间分辨率,并且香港研究人员报告了测量约 100 nm 的特征的创建,他们使用可编程镜阵列进一步加速了该过程,以创建多光束工艺1。


一类新兴的飞秒激光器非常适合这种应用。这些激光器工作在 780 nm,结合了高功率、短脉冲宽度和色散预补偿,可在焦平面上提供高通量。与更长脉冲宽度的激光器相比,这些参数产生了更有效的聚合过程,具有更高的分辨率。用户友好的电源控制功能进一步增强了对过程的精细控制。这些新激光器的早期应用包括芯片实验室产品和微结构表面的制造,以及*光子产品,例如微图案晶体。


2、无标记体内成像


多光子激发显微镜是整个生命科学研究中广泛使用的工具。与双光子光聚合一样,它仅在紧密聚焦的束腰利用飞秒脉冲的高峰值功率时依赖于与样品的空间选择性相互作用。


这里的一个关键趋势涉及转化研究,科学家们正在缓慢但肯定地将多光子技术转向临床实验室应用,并*终转向实时应用,如术中活检。出于显而易见的原因,目标技术是那些不需要荧光标记或绿色荧光蛋白等转基因蛋白来生成图像的技术。这些技术包括二次谐波生成 (SHG) 以成像胶原蛋白,其中 920 nm 是合适的波长;三次谐波产生 (THG) 以成像膜,其中 1064 nm 是一个很好的匹配;和激发内源性荧光以成像各种生物分子和代谢物,其中 780 至 800 nm 效果很好。


高数值孔径光学器件将飞秒激光束聚焦到微小的腰部,快脉冲的峰值功率足以驱动双光子吸收。增材制造技术可提供亚微米空间分辨率,并可创建小至 100 nm 的特征。由 Wildman 实验室/诺丁汉大学提供。


虽然 SHG 和 THG 显微镜需要飞秒激光,但在可见光或紫外线波长下工作的连续波激光也可以激发这些天然荧光团,但会以一定的成像深度和细胞损伤的可能性为代价。因此,飞秒激发的优势是显而易见的。


关键的内源性荧光团包括还原型烟酰胺腺嘌呤二核苷酸 (NADH) 和黄素腺嘌呤二核苷酸 (FAD)——可用作癌症特征的代谢物。众所周知,癌细胞优先使用糖酵解而不是氧化磷酸化来满足其能量需求。当比较正常细胞和癌细胞时,这表现在 NADH 与 FAD 的比率存在明显差异。NADH 被 700 至 800 nm 波长的双光子吸收有效激发,FAD 的吸收光谱延伸至 890 nm。
利用这些代谢物的早期研究依赖于两种不同的快激光波长,这对于诊断或护理点工作是不切实际的。幸运的是,在过去的几年里,研究人员已经证明,在 780 到 800 nm 窗口中运行的单个快激光器可以以相似的效率激发和成像这两种物种,因为 更强的荧光也可以在“红色”处激发其频谱的尽头。此外,同样的研究人员证明,以这种方式获得的   比率是两种不同前列腺癌细胞系2的可靠标志物。
同样,在 780下工作的*紧凑型飞秒激光器非常适合这一潜在非常重要的应用。与双光子聚合一样,无标记体内成像的其他相关激光参数包括*的光束质量以*限度地提高空间分辨率、短脉冲宽度以*限度地降低荧光所需的平均激光功率,以及用于简化扫描过程的内部功率控制——例如,用于光栅扫描期间的消隐。
3、*的晶圆计量
事实证明,快激光器在*晶圆计量领域也越来越重要。一套成熟的技术,称为皮秒激光声学 (),可测量层厚度并对不透明层下的关键对准标记进行成像。后一种能力在多层光刻工艺中很重要。
在 方法中,激光脉冲(即泵浦)的吸收产生从激光表面向内传播的声波。下层和结构将其中一些声能反射回表面,在表面通过第二个激光脉冲(即探头)的反射率变化来检测。 受益于新一代紧凑型飞秒激光器,因为这些激光器能够实现更高分辨率的成像和改进的整体测量。
由短激光脉冲和光电导开关产生的太赫兹辐射具有高强度和宽连续光谱的特点。由相干公司提供。
飞秒激光支持的*无损晶片计量方法取决于用于细胞膜无标记显微成像的谐波产生过程的变体。两种材料之间的界面,或任何非中心对称的材料,在一个非线性依赖于激光峰值功率的过程中会产生少量的二次谐波光。SHG 光信号可用于成像和检测晶片表面和亚表面的各种特征和特性。这些特征可能包括结构缺陷、薄膜质量,甚至微量金属污染。该技术已由红旗仪表商业化,该公司专门从事表面、埋藏和结构不规则性的光学非视觉缺陷计量。


4、太赫兹产生和检测

太赫兹辐射可以在固体和液体材料中提供的光谱或成像信息。该范围内的低光学频率与纳米级粒子的振动有关,例如聚合物和蛋白质等宏观分子,以及晶体等扩展结构的声子振动。因此,例如,太赫兹研究有助于绘制相位边界。然而,太赫兹频率范围几十年来一直是电磁频谱中被忽视的一部分,因为没有简单的方法来产生或检测太赫兹辐射。

,飞秒激光脉冲可用于多种机制来产生和检测太赫兹辐射。
一种方法将飞秒激光脉冲聚焦在光电导天线(或开关)上,该光电导天线(或开关)由红旗仪表厂夹在施加偏置电压的两个金属(例如,金)导体之间的诸如砷化镓(GaAs)之类的介电材料条组成。类似的结构也被用作太赫兹探测器。另一种产生太赫兹辐射的方法称为光学整流,将激光聚焦到非线性晶体中,例如磷化镓 或碲化锌 ,从而在太赫兹脉冲中的不同光谱分量之间产生差频。
通过飞秒激光脉冲产生太赫兹脉冲与通过连续波方法产生的太赫兹脉冲相比具有几个优点。短激光脉冲产生的太赫兹辐射具有较高的强度。它同时涵盖了太赫兹光谱的广泛而连续的部分,其脉冲特性支持分析技术,例如时间相关光谱学。因此,脉冲太赫兹辐射已经在诸如癌组织的医学诊断、药物的非破坏性评估、爆炸危险的识别、艺术和考古学的检查以及和安全检查任务等不同领域的成像应用中找到了用途。
如果由 1 至 5 kHz 的钛蓝宝石放大器或以兆赫兹重复率的非线性展宽镱放大器产生的非常短的脉冲,通过光学整流产生的太赫兹可以产生具有大(频率)带宽的高平均功率脉冲。

相反,由于潜在的光学损伤和饱和效应,光电导天线仅限于较低的激发功率。然而,这些天线是产生太赫兹脉冲辐射的*简单和*的方法。虽然大多数天线只需要 20 到 50 的激光功率,但在天线平铺阵列上发射单瓦的紧凑型飞秒激光器可以在成本精简的设置中实现更高功率的太赫兹生成。反过来,这样的设置可以潜在地将太赫兹时域光谱  的应用从小型实验室布置扩展到更大规模的工业和医学成像应用。
下一代飞秒激光器如何融入这张太赫兹图像?它们的短脉冲宽度使太赫兹辐射的光谱范围更广。它们以 1 W 为中心的高平均功率对于任何一种太赫兹生成方法都很有用,因为它们都是需要高输入功率的低效机制。

*飞秒激光器的实用方面,例如其流线型封装和可靠性,同样重要。一些新兴应用需要便携式或至少是便携式系统,以维持这些激光器的广泛采用。这些小型、廉价、风冷源需要*少的技术关注,可以很容易地集成到更完整的系统中,它们可以安装在所需的任何方向。
5、手机外壳全息幻彩色纹理
全息幻彩色并不是一种颜色,而是一种色系。带有全息幻彩色纹理的手机外观,在不同光线下,可反射出极为丰富的光影效

在纹理模具上,通过飞秒激光雕刻出密密麻麻的幻彩衍射单元,然后通过注塑工艺把这些神奇的光学衍射效果复刻到终产品表面上。纹理越精密越复杂,光线透过玻璃到达纹理层产生的光影效果就越丰富绚丽,流动感越强。这类纹理可以在手机、笔记本电脑等电子产品上见到。
未来的思考
虽然飞秒激光器通常被认为是*奇特的相干光源类型,但它们的开发和应用与所有其他激光技术共享模式。它们相继从研究对象转变为研究工具,并*终在其他工具和系统中用作组件。与其他激光技术一样,飞秒光源的发展受到快速扩展的实际应用领域的推动,从生命科学到工业诊断再到制造过程。

您认为该新闻

很好,强力推荐给其他网友

还行,值得推荐

一般,不值得推荐

较差,根本不用看

  • 关注本网官方微信公众号 随时阅读专业资讯

  • 征稿邮箱:info@testmart.cn

版权与免责声明

  • 凡本网注明“来源:仪器仪表交易网”的所有作品,均为仪器仪表交易网合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:仪器仪表交易网”。违反上述声明者,本网将追究其相关法律责任。
  • 本网转载并注明自其它来源(非仪器仪表交易网)的作品,目的在于传递更多信息,并不代表本网赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品第一来源,并自负版权等法律责任。
  • 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。

爆品推荐

推荐资讯

首页| 关于我们| 联系我们| 友情链接| 广告服务| 会员服务| 付款方式| 意见反馈| 法律声明| 服务条款